

Examen de rattrapage

(Durée: 1h15)

Exercice 1

Dans le référentiel R(O, x, y, z)où Oz étant la verticale ascendante, muni de la base $(\vec{t}, \vec{j}, \vec{k})$ un mpoint M de masse m, se déplace sans frottement sur l'axe Ox. Le point M et défini dans R par $\overrightarrow{OM} = x(t)\vec{t}$ (figure 1). Cette particule M est soumise en plus de son poids, à la réaction \vec{N} de Ox sur Met à l'attraction de deux points A et B fixes dans R, selon la loi des forces suivantes : $\overrightarrow{F_1} = -K \overrightarrow{AM}$; $\overrightarrow{F_2} = -K \overrightarrow{BM}$

Avec K une constante positive et le module OA=OB= a où a est un nombre réel positif. Le champ de pesanteur est représenté par \vec{g} .

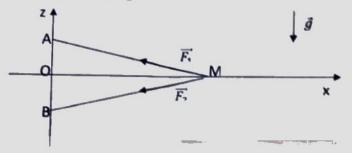


Figure 1

- 1. Montrer que $\overrightarrow{F_1} + \overrightarrow{F_2}$ passe par le point O
- 2. En appliquant le premier principe de la dynamique :
 - a. déterminer que l'expression de la composante de la réaction \vec{N} est la suivante :

$$\vec{N} = (m\vec{x} + 2Kx)\vec{i} - mg\vec{K}$$

- b. Déterminer l'équation différentielle du mouvement de M
- Donner l'expression de N dans le cas où le contact de Ox avec M est sans frottement.

Exercice 2

Dans le plan XoY du repère R(O,X, Y, Z), orthonormé direct, une particule M est repérée par ses coordonnées polaires ρ et φ telles que : $\begin{cases} \rho = 1 \\ \varphi = \frac{1}{2}\alpha t^2 \end{cases} (\alpha \ estune \ constante \ positive)$

- Trouvez l'expression de l'équation de la trajectoire de M en coordonnées cartésiennes.
 En déduire la nature de la trajectoire de M.
- 2) Dans la base $(\overrightarrow{e_p}, \overrightarrow{e_p})$ associée au système des coordonnées polaires, Donner :
 - a. L'expression du vecteur position OM,
 - b. L'expression du vecteur vitesse $\vec{V}(M/R)$. En déduire don module,
 - c. L'expression du vecteur accélération $\vec{\gamma}(M/R)$. En déduire don module.
- 3) Calculer l'abscisse curviligne s(t) du point M sachant qu'à l'instant t=0 on a s(0)=0,